Program Distribusi

Pemirsa!! Berikut di bawah ini ditampilkan tugas yang diberikan oleh Bapak Dwi, mengenai program macam - macam distribusi. Monggo disimak gan..

Uniform

Function Uniform (a,b : double) : double;
Var u : double;
Begin
u := random;
Uniform := (b-a) * u + a;
End;

Eksponensial

Function Eksponensial (beta : double) : double;
Var u : double;
Begin
u := random;
Eksponensial := -beta * ln(u);
End;

Normal

Procedure Normal (mean,variance : double ; Var z1,z2 : double);
Var u1,u2,v1,v2,w,y,x1,x2 : double;
Begin
Repeat
u1 := random;
u2 := random;
v1 := 2 * u1 - 1;
v2 := 2 * u2 - 1;
w := sqr(v1) + sqr(v2);
if w <= 1 then
begin
y := sqrt ((-2*ln(w))/w);
x1 := v1 * y;
x2 := v2 * y;
z1 := sqrt (variance) * x1 + mean;
z2 := sqrt (variance) * x2 + mean;
end
Until w <= 1;
End;

Wibull

Function Weibull (alfa,beta: double) : double;
Var u,z : double;
Begin
u := random;
z := -ln(u);
Weibull := beta * exp (ln(z)/alfa);
End;

Lognormal

procedure lognormal (mean,varr : double;
Var zln1,zln2 : double);
Var y1, y2 : double;
begin
Normal (mean,varr,y1,y2);
zln1 := exp(y1);
zln2 := exp(y2);
end;

T-student

function tdistribution(m:integer):double;
{ created :
based on Principles of Random Variate Generation
by John Dagpunar, 1988
published by Claredon Press - OXFORD

please check if any other theory of t-distribution }

Label r2;
Var v,x,r,s,c,a,f,g,mm : real;
begin
mm:=0;
if m < 1 then
begin
writeln('impermissible degrees of freedom.');
halt;
end;
if (m <> mm) then
begin
s:=m;
c:=-0.25*(s+1);
a:=4/power((1+1/s),c);
f:=16/a;
if m>1 then
begin
g:=s-1;
g:=power(((s+1)/g),c)*sqrt((s+s)/g);
end else
g := 1;
mm:=m;
end;
r2:repeat
r:=random;
until r > 0.0;
x:=(2*random-1)*g/r;
v:=x*x;
if (v>(5-a*r)) then
begin
if ((m>=3) and (r*(v+3)>f)) then goto r2;
if (r>power((1+v/s),c)) then goto r2;
end;
tdistribution :=x;
end;

Bilangan Biner

Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan simbol 0 dan 1. Sistem bilangan modern ini ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Sistem ini bisa disebut juga dengan bit atau binary digit.
Bagaimana perhitungan bilangan biner?
Misal,
1 = 1
11 = 3
111 = 7
berapakah 111.......1(32) = ...... ?
111.......1(32) = (2^k) - 1, dengan k merupakan jumlah bilangan biner '1'. Sehingga bilangan terbesar dalam komputer adalah 32 digit biner. Bila melebihi ini, komputer tidak akan bisa membacanya.
Ingin tahu lebih lanjut mengenai perhitungan sistem bilangan ini dan bilangan lainnya???
Klik di sini!


Materi Tambahan: Invers Transformasi



Pendekatan matematis di atas dilakukan untuk mengacak data yang berdistribusi uniform(a,b), commandnya dalam Pascal adalah sebagai berikut!

function uniform(a,b:real) :real;
begin
uniform:=a+(b-a)x random;
end;

Untuk data yang berdistribusi eksponensial:

function expo(mean:real) : real;
begin
uniform:=-log e (random) * mean;
end;

{Materi Kuliah Teknik Simulasi, Pak Dwi}

Pseudorandom numbers

Dalam postingan kali ini, kita akan membahas tentang pseudorandom number generation. Apa yang dimaksud dengan Pseudorandom numbers?? Pseudo artinya semu, jadi secara garis besar pseudorandom berarti bilangan acak semu.

Salah satu pendekatan untuk membangkitkan pseudorandom numbers dimulai dengan nilai Xo yang bernama seed , dan menghitung secara acak nilai - nilai selanjutnya yaitu Xn, n>=1, dengan rumus,
Xn = AXn-1 Modulo M,
dimana A dan M merupakan bilangan bulat positif, AXn-1 dibagi M dan menghasilkan sisa, yaitu Xn.
Untuk lebih memperjelas, perhatikan contoh perhitungan berikut ini:
Misal,
A = 2
M = 5
Xo = 3, maka
X1 = 2(3) Modulo 5 = 1
X2 = 2(1) Modulo 5 = 2
X3 = 2(2) Modulo 5 = 4
X4 = 2(4) Modulo 5 = 3

Kenapa bisa disebut acak semu? Karena hasilnya berulang, yaitu pada saat X4, nilai dari X4 kembali pada Xo, maka disebut acak semu atau pseudorandom. Untuk membuat hasil lebih acak, n perlu dibuat lebih besar. Materi lengkap mengenai Pseudorandom number bisa dilihat di link ini.


{Materi Kuliah Teknik Simulasi, Pak Dwi}

Estimator

Bagaimanakah seorang statistikawan bekerja? Apakah setiap karakteristik dari populasi dipelajari? Ternyata tidak, statistikawan tidak bekerja langsung pada populasi, diperlukan waktu, tenaga, dan perhatian yang lebih untuk mendefinisikan populasi secara detil. Oleh karena sangat rumit untuk mempelajari populasi secara menyeluruh, maka hanya sebagian kecil dari populasi yang dipelajari, yaitu yang disebut dengan sampel, sampel diambil dari populasi dan digunakkan untuk mengestimasi karakteristik dari populasi itu sendiri. Apa saja kriteria estimator yang baik? Diantaranya adalah unbiassed.


1 . Estimator tak bias ( mean )
, apabila terdapat sekumpulan data sebagai berikut,

Contoh 1:


maka perhitungan sistematisnya adalah sebagai berikut,

karena nilai ekspektasi tersebut sama dengan nilai parameter, maka estimator tersebut dikatakan tidak bias.

2. Estimator tak bias ( varians )
Dalam statistika deskriptif, variasi merupakan ukuran keragaman untuk mengukur variabilitas dari kumpulan data. Variasi dapat dibedakan menjadi 2 yaitu:

  • 1. Variasi untuk populasi


  • 2. Variasi untuk sampel




Kedua rumus di atas akan dibandingkan dengan menggunakan contoh simulasi melalui software Minitab. Berikut diberikan algoritmanya:

  • 1. Bangkitkan data yang berdistribusi normal dengan mean 60 dan varians 1 sebanyak 100 sebagai populasi


  • 2. Ambil 10 sampel (n=10) sebanyak 10 (m=10)


  • 3. Hitung varians tiap sampel dan populasi


  • 4. Bandingkan varians dari sampel dan populasi. Bila varians sampel sama dengan varians populasi maka estimator dikatakan tidak bias, sebaliknya bila varians sampel tidak sama dengan varians populasi maka estimator dikatakan tidak bias.


UPDATE!!!


Kepada AssDos:
Mas Senja n Mbak Lutfi...

Kl mau nge-check update-an baru dari blog ini, pilih ja post update ini ok! disini tiap update-an akan diberitahukan beserta tanggal updatenya, suwun.....

Update 1 (6-9-09):
  1. 1. Postingan baru: Manfaat Simulasi, Menaksir phi,
  2. 2. Tambahan materi dalam posting: Contoh penerapan simulasi,
Update 2 (7-9-09):
  1. 1. Postingan baru: Estimator,
  2. 2. Tambahan materi dalam posting: -
Update 3 (12-9-09)
  1. 1. Postingan baru: Pseudonumbers, Bilangan biner, Program Distribusi
  2. 2. Tambahan materi dalam posting: -

Menaksir Phi

Apa itu phi? 3.14? 22/7? Apakah phi merupakan bilangan rasional (bilangan yang bisa ditulis sebagai pecahan) ? Menurut Bapak Dwi, dosen mata kuliah teknik simulasi Institut Teknologi Sepuluh Nopember, phi bukanlah 3.14 ataupun 22/7, phi juga bukan merupakan bilangan rasional. lalu apa yang dimaksud dengan phi?

Berikut akan diberikan sebuah program yang bisa menaksir harga phi, tetapi sebelumnya perhatikan gambar lingkaran dalam persegi disamping ini. Apabila kita anggap gambar tersebut sebuah target shooting range, maka terdapat tiga kemungkinan tempat jatuhnya peluru, yaitu:
  1. A. Dalam lingkaran,
  2. B. Di luar lingkaran tetapi di dalam persegi,
  3. C. Di luar persegi.
Pendekatan secara sistematis dilakukan terhadap penelitian ini, dimana rasio perbandingan luas lingkaran terhadap luas persegi berbanding lurus dengan jumlah peluru yang jatuh di dalam lingkaran terhadap jumlah peluru yang jatuh di dalam persegi. Hasil akhir dari perhitungan ini akan menghasilkan sebuah taksiran phi. Perhitungan lengkap bisa anda simak dalam gambar berikut ini!

Sebelum dilanjutkan ke bagian pemrograman, terlebih dahulu perlu diketahui apa saja syarat sebuah peluru jatuh di dalam maupun di luar lingkaran, perhatikan gambar di bawah ini!


Dalam gambar di atas, terdapat sebuah seperempat lingkaran dengan jari - jari 1, maka persamaan lingkarannya adalah x^2 + y^2 = 1, x dan y berdistribusi uniform. Sebuah peluru dikatakan jatuh di dalam lingkaran bila x^2 + y^2 < 1, dan sebaliknya jatuh di luar lingkaran bila x^2 + y^2 > 1.

Program penaksir phi ini dibuat dengan bantuan software pascal. Bagaimana konsep program penaksir ini bekerja? Seperti yang dijelaskan di atas, program ini bekerja dengan cara menghitung rasio jumlah peluru yang jatuh yang jatuh di dalam ataupun di luar lingkaran. Algoritma program ini akan dipaparkan dalam langkah - langkah berikut:
  1. 1. Terlebih dahulu deklarasikan variabel - variabel yang digunakan
  2. 2. Misalkan banyaknya percobaan m = 1000, dan untuk masing - masing percobaan akan diambil sampel sebanyak n = 10000, artinya untuk 1x percobaan peluru sebanyak 10000 akan ditembakkan ke dalam target. Pengambilan titik peluru sebanyak 10000 ini bersifat random, jadi tidak mungkin terjadi pengulangan.
  3. 3. Bila kita melakukan 1000 percobaan, maka akan dihasilkan phi sebanyak 1000, misal s merupakan jumlah dari phi secara keseluruhan.
  4. 4. Setelah mendapatkan jumlah dari keseluruhan phi, perlu diketahui rata - rata phi yang bermunculan, jadi bagilah s dengan jumlah percobaan, yaitu 1000.
  5. 5. Misalkan variabel p merupakan hasil rata - rata dari phi, variabel inilah yang merupakan taksiran phi.
Berikut diberikan command dan screenshot dari program penaksir phi ini!



setelah di-run, akan menghasilkan output (taksiran phi) sebagai berikut!



Manfaat Simulasi

Simulasi digunakan sebelum sebuah sistem yang ada dibangun dengan manfaat:

  1. 1. To reduce the chance of failure to meet specifications,
  2. 2. To eliminate unforeseen bottlenecks,
  3. 3. To prevent under or over utilization of resource,
  4. 4. To optimize system performance.

{Modul Teknk Simulasi - Prof Drs Nur Irawan MIKom PhD }

Software Simulasi

Terdapat berbagai macam software pendukung untuk statistical simulation, salah satunya adalah ISS atau Integrated Statistical Simulation.









Integrated Statistical Simulation adalah sebuah software pengolahan data dan simulasi statistika yang dirancang secara khusus sesuai dengan kebutuhan praktikum sehingga dapat mempercepat pencapaian sasaran praktikum.
ISS memiliki kemampuan :
1. Pembangkitan bilangan random berdistribusi Poisson dan Normal
2. Interfacing dengan timbangan digital, digunakan untuk mengumpulkan data secara langsung, data yang berupa berat obyek tersebut secara otomatis tersimpan dalam file server.
3. Simulasi percobaan Binomial dan Hipergeometrik berupa animasi pengambilan sampel.
4. Pengolahan data Statistika Deskriptif berikut grafiknya
5. Pengolahan data Binomial dan Hipergeometrik
6. Pengolahan data Statistika Parametrik (Uji Hipotesis Parametrik)
7. Pengolahan data Statistika Nonparametrik
8. Pengolahan data Uji Kesesuaian Distribusi (Goodness of Fit test)
9. Pengolahan data Regresi dan Analisis Korelasi

Untuk mengetahui dan men- download software lain pendukung simulasi, anda bisa melihat web ini.


{ Source }

Jurnal Simulasi

Teknik simulasi tidak jarang digunakan sebagai topik penelitian oleh para ilmuwan dalam penelitiannya, berikut beberapa jurnal yang membahas tentang simulasi dari beberapa macam bidang ilmu pengetahuan:

simulasi sistem kompresi suara

simulasi dan pemodelan sistem pertanian

simulasi aliran gas-solid-liquid

simulasi sistem interlock pengaman operasi

simulasi penentuan titik pertemuan sistem manufaktur

simulasi bisnis dengan pendekatan sistem dinamis

simulasi komputer

simulasi hearing

Jurnal - jurnal di atas merupakan contoh - contoh dari penerapan simulasi, untuk men-download jurnal - jurnal lainnya, click on these links!

Link 1, Link 2, Link 3, Link 4 !

Contoh Penerapan Simulasi

Seperti telah dijelaskan di dalam pengertian simulasi, simulasi merupakan suatu model pengambilan keputusan dengan mencontoh atau mempergunakan gambaran sebenarnya dari suatu sistem kehidupan dunia nyata tanpa harus mengalaminya pada keadaan yang sesungguhnya. Oleh karena itu simulasi perlu dilakukan sebelum keadaan yang sesungguhnya terjadi untuk mengurangi effect dari kejadian tersebut. Berikut diberikan contoh - contoh penerapan simulasi.

  • - Simulasi pengawalan presiden.



  • - Simulasi pemungutan suara pemilu.




  • - Simulasi kebakaran


  • - Simulasi Cockpit




Conth pengaplikasian teknik simulasi lainnya, yaitu dengan menggunakan software visual basic 6.0 dapat anda lihat di link ini.

Aplikasi simulasi dalam bidang lainnya, menurut Law, dipaparkan dibawah ini:
  1. 1. Designing and analyzing manufucture systems,
  2. 2. Evaluating hardware and software requirements for computer system,
  3. 3. Evaluating a new military system for weapon and tactics,
  4. 4. determining ordering policies for inventory system,
  5. 5. Designing communication system and message protocols for them,
  6. 6. Designing and operating transportation facilities such as, freeways, airport, subways or port
  7. 7. Evaluating design for service organizations, such as hospitals, post offices, or food restaurants,
  8. 8. Analyzing financial or economic system.

Klasifikasi Simulasi


Model – model simulasi yang ada dapat dikelompokkan ke dalam enam bagian, antara lain :

  1. 1. Model statik: Model statik tidak memperhatikan perubahan – perubahan nilai dari variabel – variabel yang ada kalau terjadi pada waktu yang berbeda. Waktu tidak berperan di sini. Contoh: Model Monte Carlo.
  2. 2. Model dinamik: Model yang memperhatikan perubahan – perubahan nilai dari variabel – variabel yang ada kalau terjadi pada waktu yang berbeda. Contoh: Sistem conveyor di pabrik.
  3. 3. Model deterministik: Pada model ini tidak memiliki komponen probabilistik (random). Sehingga pemecahan menjadi lebih sederhana.
  4. 4. Model stokastik: Memiliki komponen input random, dan menghasilkan output yang random pula.
  5. 5. Model kontinu: Status berubah secara kontinu terhadap waktu, misal: gerakan pesawat terbang.
  6. Model diskrit: Status berubah secara instan pada titik-titik waktu yang terpisah, misal: jumlah customer di bank.

Langkah - Langkah Dalam Proses Simulasi


Pada umumnya terdapat 5 langkah pokok yang diperlukan dalam menggunakan simulasi, yaitu :
  1. 1. Menentukan persoalan atau sistem yang hendak disimulasi.
  2. 2. Formulasikan model simulasi yang hendak digunakan.
  3. 3. Ujilah model dan bandingkan tingkah lakunya dengan tingkah laku dari sistem nyata, kemudian berlakukanlah model simulasi tersebut.
  4. 4. Rancang percobaan – percobaan simulasi.
  5. 5. Jalankan simulasi dan analisis data

{ Source }

Pengertian Simulasi

Simulasi berasal dari kata simulate yang artinya adalah meniru. Simulasi merupakan suatu model pengambilan keputusan dengan mencontoh atau mempergunakan gambaran sebenarnya dari suatu sistem kehidupan dunia nyata tanpa harus mengalaminya pada keadaan yang sesungguhnya. Teknik simulasi dapat juga digunakan untuk memformulasikan dan memecahkan model – model dari golongan yang luas, selain itu juga dapat digunakan untuk merancang, menganalisa dan menilai suatu sistem. Jadi secara garis besar, teknik simulasi berarti teknik untuk meniru, dan hasil tiruannya dinamakan simulator.


Jika hubungan antara komponen
– komponen yang membentuk suatu model cukup sederhana, maka kemungkinan dapat digunakan metode matematik untuk mendapatkan suatu informasi yang eksak darinya. Metode ini disebut penyelesaian secara analitis. Akan tetapi pada kenyataannya sistem – sestem dalam dunia nyata seringkali terlalu rumit untuk dijadikan model yang realistik dan dianalisa secara analitis. Oleh karena itu model – model ini harus dipelajari dan diselesaikan dengan teknik simulasi.

Ada beberapa keuntungan penggunaan metode simulasi dalam analisis sistem, antara lain adalah sebagai berikut:
  1. 1. Sebagian besar sistem riil dengan elemen-elemen stokastik tidak dapat dideskripsikan secara akurat dengan model matematik yang dievaluasi secara analitik. Dengan demikian simulasi seringkali merupakan satu-satunya cara.
  2. 2. Simulasi memungkinkan estimasi kinerja sistem yang ada dengan beberapa kondisi operasi yang berbeda.
  3. 3. Rancangan-rancangan sistem alternatif yang dianjurkan dapat dibandingkan via simulasi untuk mendapatkan yang terbaik.
  4. 4. Pada simulasi bisa dipertahankan kontrol yang lebih baik terhadap kondisi eksperimen.
  5. 5. Simulasi memungkinkan studi sistem dengan kerangka waktu lama dalam waktu yang lebih singkat, atau mempelajari cara kerja rinci dalam waktu yang diperpanjang.
Selain kelebihan – kelebihan diatas, terdapat juga beberapa kekurangan dari simulasi, yaitu:
  1. 1. Setiap langkah percobaan model simulasi stokastik hanya menghasilkan estimasi dari karakteristik sistem yang sebenarnya untuk parameter input tertentu. Model analitik lebih valid.
  2. 2. Model simulasi seringkali mahal dan makan waktu lama untuk dikembangkan.
  3. 3. Output dalam jumlah besar yang dihasilkan dari simulasi biasanya tampak meyakinkan, padahal belum tentu modelnya valid.



{ Source, Modul Teknk Simulasi - Prof Drs Nur Irawan MIKom PhD }